
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2007; 53:753–775
Published online 23 August 2006 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1304

Comparison of derivative free Newton-based and evolutionary
methods for shape optimization of flow problems

Zerrin Harth∗,†, Hongtao Sun‡ and Michael Schäfer�

Department of Numerical Methods in Mechanical Engineering, Darmstadt University of Technology,
Darmstadt, Germany

SUMMARY

The object of this study is to investigate two derivative free optimization techniques, i.e. Newton-based
method and an evolutionary method for shape optimization of flow geometry problems. The approaches
are compared quantitatively with respect to efficiency and quality by using the minimization of the pressure
drop of a pipe conjunction which can be considered as a representative test case for a practical three-
dimensional flow configuration. The comparison is performed by using CONDOR representing derivative
free Newton-based techniques and SIMPLIFIED NSGA-II as the representative of evolutionary methods
(EM).

For the shape variation the computational grid employed by the flow solver is deformed. To do this,
the displacement fields are scaled by design variables and added to the initial grid configuration. The
displacement vectors are calculated once before the optimization procedure by means of a free form
deformation (FFD) technique.

The simulation tool employed is a parallel multi-grid flow solver, which uses a fully conservative
finite-volume method for the solution of the incompressible Navier–Stokes equations on a non-staggered,
cell-centred grid arrangement. For the coupling of pressure and velocity a pressure-correction approach
of SIMPLE type is used. The possibility of parallel computing and a multi-grid technique allow for a
high numerical efficiency. Copyright q 2006 John Wiley & Sons, Ltd.

Received 22 February 2006; Revised 7 June 2006; Accepted 12 June 2006

KEY WORDS: computational fluid dynamics; numerical shape optimization; derivative-free optimization;
Newton based optimization; evolutionary methods; free form deformation

∗Correspondence to: Zerrin Harth, Department of Numerical Methods in Mechanical Engineering, Darmstadt
University of Technology, Petersenstr. 30, 64287 Darmstadt, Germany.

†E-mail: zerrin@fnb.tu-darmstadt.de, http://www.fnb.tu-darmstadt.de
‡E-mail: sun@fnb.tu-darmstdt.de
§E-mail: schaefer@fnb.tu-darmstadt.de

Copyright q 2006 John Wiley & Sons, Ltd.

754 Z. HARTH, H. SUN AND M. SCHÄFER

1. INTRODUCTION

Over the last quarter century, optimization has become an essential tool in computer aided en-
gineering and has found applications in design, control, operations, and planning. In engineering
practice, one is interested in, e.g. reducing the drag force of airplanes or vehicles, minimizing the
dissipation in channels or hydraulic valves, etc. Such an investigation combines various distinct
modules for the solution of the problem: geometric modelling, mesh generation, non-linear analy-
sis of the fluid flow, sensitivity analysis, mathematical programming, and shape optimization. The
first area of research on shape optimization was the field of structural analysis applications [1–3].
In recent years also in fluid mechanics a variety of applications have been considered [4–9].

Since there are a multitude of different optimization techniques the question arises, which suits
best for a specific problem. In the past decade, the availability of parallel computers and faster
computing hardware and the need to incorporate complex simulation models within optimiza-
tion studies, have led a number of optimization researchers to reconsider classical direct search
approaches. Using complex fluid flow simulation programs it is usually not possible to get easy
access to the derivative information of the requested approximations. Therefore, in such situations
it is advantageous to use an optimization technique that does not directly depend on the derivative
information.

In the present paper we consider two such techniques which appear to be promising in this
context: CONDOR [10] representing a derivative free Newton-based optimization method (DFNBM)
and SIMPLIFIED NSGA-II [11] representing an evolutionary method (EM).

One of the first researches about optimization without any derivative information has began with
Rosenbrock [12] in 1960s. The Rosenbrock method is a 0th-order search algorithm which means
that it does not require any derivatives but only a number of evaluations of the objective function. (A
rigorous proof of convergence of the direct search method of Rosenbrock is given in Reference [13].)
The work of Rosenbrock has spawned considerable research on the analysis and code development
for derivative free Newton-based optimization methods like Powell’s UOBYQA [14], DFO [15],
CONDOR [10] and lately NEWUOA [16]. It is very well-known that old Newton-based methods are
faster, needs less number of function evaluations, but are usually giving solutions of poor quality.

Conn et al. [15] construct a multivariable DFO algorithm that uses a surrogate model for the
objective function within a trust region method. In their work points are sampled to obtain a well-
defined quadratic interpolation model and descent conditions from trust region methods enforce
convergence properties. The CONDOR package employed is a variant of these kinds of methods.

Evolutionary methods, first proposed in Reference [17], are based on the analogy of improving
a population of solutions through modifying their gene pool. Two forms of genetic modification,
crossover or mutation, are applied where the elements of the optimization vector are represented
by binary strings. Crossover deals with random swapping of vector elements (among parents with
highest objective function values or other rankings of the population) or any linear combinations
of two parents. Mutation deals with the addition of random values to elements of the vector.
Genetic algorithms (GAs), as one computational model from the family of evolutionary methods,
are widely used in process engineering and a number of codes are available.

The geometry variation is done by a specially adapted free form deformation (FFD) tech-
nique which already have been applied successfully for fluid flow applications [4, 6, 18, 19]. The
numerical flow simulations are performed with the finite-volume flow solver FASTEST which, due
to a multi-grid technique and the possibility for parallel computing, allows for a high numerical
efficiency [20, 21].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 755

For the comparison of the two optimization approaches, an integrated procedure is applied that
modularly couples the optimization tool, the free form deformation technique, and the flow solver.
As representative test case for a complex three-dimensional flow configuration, we investigate the
optimization of the connection of two pipes with respect to the minimization of the pressure drop.

2. OPTIMIZATION

In general, a non-linear optimization problem with non-linear constraints can be stated as

min f (xi)

w.r.t. li�xi�ui , i = 1, . . . , I box constraints

gm(xi)�0, m = 1, . . . , M inequality constraints

hn(xi) = 0, n = 1, . . . , N equality constraints

(1)

where f is the function to be optimized, xi are the I design variables, and gm and hn are the
M inequality and N equality constraints, respectively. The problems to be optimized in engineer-
ing fluid flow applications can be pressure drop, volume, lift, drag, heat exchange, etc. or any
combination of these. The algorithms developed for the solution of such optimization problems
as stated in (1) vary greatly. In the case of fluid dynamics based optimization problems when the
fluid is modelled by the Navier–Stokes equations, it is usually nearly impossible to compute the
exact derivatives of the finite dimensional approximations of these equations with respect to shape
and mesh motion. Therefore, it is desirable to employ methods which do not use the derivative
information of the objective function directly.

The optimization techniques which do not attempt to directly compute approximations to the
derivative information are called derivative free optimization methods. It is difficult to state where
the idea of derivative free optimization was first introduced, but in the survey of Wright [22] it
is remarked that the direct search methods are first suggested in the 1950s. The first research
was done by Spendley et al. [23] and afterwards various other methods were developed to handle
similar classes of problems, e.g. References [10, 14–16]. Besides his many important suggestions,
Powell [14, 24, 25] has also suggested the use of variational criteria, e.g. good information from
an approximation can be inherited by its successors at subsequent iterations.

2.1. Derivative free Newton-based methods

Derivative free Newton-based methods (DFNBM) are based on trust region algorithms which are
a natural evolution of line search algorithms. In trust region methods an approximate solution is
constrained to lie within a region where an approximation model is sufficiently accurate. The trust
region framework is usually used in the context where at least the gradient and sometimes the
Hessian of the objective function can be evaluated or estimated accurately. If the current trust radius
is binding, minimizing the approximation model function subject to this constraint may modify
the direction as well as the length of the Newton step. The accuracy of the model is assessed by
comparing the actual decrease in the objective function with the one predicted by the model, and
the trust radius is increased or decreased accordingly.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

756 Z. HARTH, H. SUN AND M. SCHÄFER

Generally the trust region method can be stated as

1. Given a current iterate, build a good local approximation model (e.g. based on a second-order
Taylor series approximation)

2. Choose a neighbourhood around the current iterate where the model is ‘trusted’ to be accurate.
3. Minimize the model in this neighbourhood.
4. Determine if the step is successful by evaluating the true function at the new point and

comparing the true reduction in value of the objective with the reduction predicted by the
model.

5. If the step is successful, accept the new point as the next iterate and proceed (possibly,
increasing the size of the trust region if the success is really significant). If the step is not
successful, reject the new point and reduce the size of the trust region.

6. Repeat until convergence.

An important improvement of Powell to derivative free optimization is the method that he has
proposed for constrained optimization where the objective function and constraints are approxi-
mated by linear multivariate interpolation. He described an algorithm using a multivariate quadratic
interpolation model of the objective function for unconstraint optimization problems [14, 24, 25].

For our comparative studies we use the derivative free Newton-based optimization algorithm
CONDOR, developed by Frank Vanden Berghen [10]. It is based on the trust region framework
together with a local quadratic approximation model �(x) of the objective function

f (x)≈ �(x)=
K∑

k=1
�k�k(x), x ∈ �n (2)

where �k(x) constitutes a basis of the space of quadratic polynomials and the coefficients �k
are determined such that �(xk) = f (xk) at K sampling points xk . For a unique definition of a
quadratical model in n variables one needs at least 1

2 (n + 1)(n + 2) = K points and their function
values.

In the trust region based process, instead of the objective function (1), the interpolation model
(2) is minimized by applying a standard optimization method within a trust region, i.e. find

min �(xi)

w.r.t. ‖xi − xki ‖∞�∇k

li�xi�ui , i = 1, . . . , I box constraints

gm(xi)�0, m = 1, . . . , M inequality constraints

hn(xi) = 0, n = 1, . . . , N equality constraints

(3)

where xki is the midpoint of the trust region for the kth iteration step, ∇k is the trust region radius
for the kth iteration.

A distinguished feature of Powell’s UOBYQA method, later on inherited by CONDOR, is its use
of two trust region radii. In these methods the optimization process is calculated

w.r.t. �k < ‖xi − xki ‖2 < ∇k (4)

where the additional variable �k represents the average distance between the sample points at
iteration k.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 757

CONDOR combines the advantages of both trust region and line-search worlds via using a trust
region due to its robustness and speed when confronted to highly non-linear objective function and
using line-search techniques because of their superiority when confronted to non-linear constraints.
It uses the Moré and Sorensen algorithm [26] which is numerically very stable in step calculation
and leads to very fast convergence. When no non-linear constraints are active, then the step
calculation is performed by using an Augmented Lagrangian method. CONDOR is specially designed
for small dimensional problems and computationally intensive load objective functions. It constructs
a fully quadratic model of the objective function based on Lagrange interpolation and the curvature
information is obtained from the quadratical model. The main benefit of this approach is that the
local gradient of the objective function with respect to the design variables does not have to be
provided by the flow solver.

2.2. Genetic algorithms

Evolutionary methods cover a group of search and optimization algorithms based upon the natural
evolution. One of the main representatives is the Genetic Algorithm (GA),which was invented by
John Holland in 1960s [17] and has been developed successfully to a useful search and optimization
process for more than decades. Although conceptually simple, this algorithm is sufficiently complex
to provide robust and powerful search mechanisms. As a direct method, GA does not require any
gradient information. Therefore, it may need more function evaluations but is suitable to be applied
to fluid flow problems. The next subsection details the working principle and some exemplary
genetic operators which we will apply to our numerical experiments. Here only the real-coded
genetic algorithms [27, 28] are concerned as they have superior ability for handling continuous
search space optimization problems.

2.2.1. Working principle. The working principle of GAs is to spread a set of solutions in the
potential design space in a randomized manner. In real-coded genetic algorithm, the solution will
be represented directly by using a vector of real parameters, these parameters are also called
individuals. Then each solution is assigned a fitness value related to the objective function in the
optimization problem. Thereafter, the solutions are varied iteratively by the selection, recombination
and mutation, which are formalized by mimicking the evolution phenomena in nature, towards
an optimal state. Selection operator decides which solutions are maintained and used as parents
to produce new solutions for the proceeding generation. New solutions are the combinations of
existing good solutions with some occasional variations. They are created by recombination and
mutation operators. The procedure is illustrated in Figure 1.

Selection: Inspired by the role of natural selection in evolution, the selection operator selects
two parent solutions for generating new solutions, i.e. offsprings. In the selection, a solution with
a high fitness value has more chance to be selected as one of the parents than a solution with a
low fitness value. There are several selection schemes which are often employed, such as roulette
wheel selection, tournament selection, and so on. The tournament selection scheme is getting
increasingly popular because of its implicitness and controlled takeover property [29], where a
number of solutions is chosen randomly from the population and the best solution from this group
is selected as parent. This process is repeated as often as solutions must be chosen. These selected
parents produce offsprings afterwards. The tournament size � takes values ranging from 2 to N
(number of solutions in the population).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

758 Z. HARTH, H. SUN AND M. SCHÄFER

Population initialization

Fitness evaluation Termination? Stop !

Mutation

Recombination

Selection

Yes

No

gen = gen +1

Figure 1. Flow chart of genetic algorithms.

Recombination: Recombination operator defines the way to create new solutions by combining
and varying the selected parents operators. A detailed description of real-coded recombination
operators can be found in References [30, 31]. The operator used here is called simulated binary
crossover (SBX) [32]. It is one of the parent-centric operators, whose idea is to assign equal
probability for each parent to create offsprings and more probability to create offsprings near the
parents. In Reference [33], it has been argued that choosing parent-centric recombinations are
more meaningful than mean-centric recombinations for a steady and reliable search. In SBX, two
parents x p1

i and x p2
i are involved in the recombination procedure and two offsprings xo1i and xo2i

are supposed to be created. A spread factor �i is defined as the ratio of the absolute difference in
offspring values and parents values

�i =
∣∣∣∣∣ x

o2
i − xo1i

x p2
i − x p1

i

∣∣∣∣∣ (5)

From the probability distribution function

P(�i) =
⎧⎨
⎩
0.5(�c + 1)�

�c
i if �i�1

0.5(�c + 1)1/�
�c+2
i otherwise

(6)

the ordinate �qi can be calculated by equation

�qi =

⎧⎪⎪⎨
⎪⎪⎩

(2�i)
1/�c+1 if �i�0.5[
1

2(1 − �i)

]1/�c+1

otherwise
(7)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 759

so that the area under the probability curve from 0 to �qi is equal to a randomly chosen
number �i .

The distribution index �c is any non-negative real number and its value is proportional to the
probability for creating offsprings near the parents. After obtaining �qi , we can get the offsprings
as follows:

xo1i = 0.5[(1 + �qi)x p1
i + (1 − �qi)x p2

i]
xo2i = 0.5[(1 − �qi)x p1

i + (1 + �qi)x p2
i]

(8)

In SBX, since the distance between offsprings is proportional to the distance of parents (5), the
optimization will get a large search space at the beginning as the parents are randomly generated
and far away from each other and also self-adaptively narrow down the search space at the later
iterations to achieve convergence to optima.

Mutation: In real-coded GA, the mutation operator adds perturbations to the individuals with a
probability. It ensures sufficient population to be spread in the decision variable space, therefore
GAs own the global search ability after an infinite computation time. The added perturbations are
created randomly by a suitable distribution. And the mutation probability is inversely proportional
to the number of design variables. It means that more design variables will lead to less chance
for an individual to undergo mutation. Based on the type of distributions, there are a number
of mutation operators such as random mutation, non-uniform mutation [34], normally distributed
mutation, and polynomial mutation [35]. In this paper, we use the polynomial mutation operator,
which employs a polynomial function as the probability distribution

xnewi = xoldi + (xmax
i − xmin

i)	̄i (9)

where 	̄i is calculated from polynomial probability distribution

	̄i =
⎧⎨
⎩

(2ri)
1/(�m+1) − 1 if ri < 0.5

1 − [2(1 − ri)]1/(�m+1) if ri�0.5
(10)

in which a user-determined parameter �m produces a perturbation of order O(1/�m) and ri is a
random number between 0 and 1.

2.2.2. Simplified NSGA-II. In this paper, we use the simplified non-dominated sorting genetic
algorithm (NSGA-II). NSGA-II is proposed by Deb et al. [11] and has demonstrated its superior
performance on a number of multi-objective optimization problems [36–39]. Designed to be an
elitist strategy, it preserves best solutions by the application of selection operators on the combined
parent–offspring population Rg . Nevertheless, for solving single-objective optimization problem,
instead of a set of optimal solutions, the procedures of non-dominated sort and crowded selection
could be simplified by just choosing the best N solutions from Rg into the next generation.
SIMPLIFIED NSGA-II inherits the elitist property of NSGA-II. Thereby, compared with normal GA,
it has the ability of keeping the best solutions in the parents generation, without being affected
by genetic operators such as crossover and mutation operators. The main loop of the SIMPLIFIED

NSGA-II is as follows:

1. Generation counter gen= 0; Initialize parent population P0 and offspring population Q0 of
size N , respectively.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

760 Z. HARTH, H. SUN AND M. SCHÄFER

2. Function evaluation, i.e. fitness assignment of Pg and Qg .
3. Rg = Pg ∪ Qg .
4. Choose the best N solutions from Rg as Pg+1.
5. Termination: if stopping criterion is satisfied, then set Pfinal = Pg+1 and terminate.
6. Select parents for mating process.
7. Perform crossover and mutation operators to create new population Qg+1.
8. g= g + 1.
9. Go to step 2.

3. GEOMETRY DEFORMATION

In a numerical design optimization process, the shape deformation is obtained by deforming the
computational grid used by the flow solver. For a given mesh of M grid points, the shape of the
model is defined by the 3M dimensional vector G which contains all coordinates g(j), j = 1, . . . ,
M of the grid points G= (g(1), g(2), . . . , g(M)). Changing the geometry means changing the grid
point coordinates. Denoting the vector of initial grid points with Gini and the vector of deformed
grid points with Gdef, this process can be summarized by the equation

Gdef =Gini + T (11)

where T is the 3M dimensional deformation vector consisting of the deformation information for
each node. Since in this classical approach for each grid point a deformation has to be defined,
the number of design variables (DVs) is equal to the number of grid point coordinates. However,
for the variation of a flow geometry it is important to employ methods which reduce the number
of the DVs because of the high computational costs. For this purpose, a tool based on free form
deformation (FFD) technique [40] is employed.

In this technique the shape and its deformation is defined through a few control points compared
to the number of nodes needed for the discretization of the shape for a simulation. An example of
a 3-dimensional geometry deformation with 4 control points is given in Figure 2. In this technique
the deformation is defined as

Gdef =Gini +
N∑
i=1

xiTi (12)

where Ti are N shape basis vectors (SBVs) defining the deformation direction and xi are the
coefficients of the shape basis vectors acting as N design variables (DVs) for the optimization
process.

The shape basis vectors are defined and computed once before the optimization process starts
by applying a free form deformation technique. The generation of shape basis vectors is achieved
by the deformation of a unit cube in a logical coordinate system where the points within the unit
cube are denoted by

n0 =

⎡
⎢⎢⎣
s

t

u

⎤
⎥⎥⎦ , s, t, u ∈ [0, 1] (13)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 761

Figure 2. An example of 3-dimensional geometry deformation with FFD technique obtained by moving
4 control points. (left: original shape; right: deformed shape).

By dividing the unit cube equidistantly in all directions, the so-called control points are
defined by

p0 =

⎡
⎢⎢⎣
d/	

e/

f/�

⎤
⎥⎥⎦ , d ={0, . . . , 	}, e= {0, . . . ,
}, f ={0, . . . , �} (14)

where 	,
 and � represent the total number of control points in each direction. Moving the control
points from their initial position leads to a deformation of the geometry inside the unit cube
and the resulting displacement field can be used as the shape basis vector corresponding to that
displacement. Usually individual or pairs of control points inside one face of the unit cube are
moved to create a shape basis vector, i.e. p0def → pidef. The new points are obtained by

ni =
	∑

d=0

∑
e=0

�∑
f =0

a	
d(s)a

e(t)a

�
f (u)pidef (15)

where the product of three Bernstein polynomials a	
d(s), a

m

 (t) and a�

f (u) defines the deformation.
The Bernstein polynomial aml (n) is defined as

aml (n)=
(
m

l

)
(1 − n)m−lnl = m!

l!(m − l)! (1 − n)m−lnl (16)

with n ∈ [0, 1]. The number of control points in the corresponding directions defines the orders
of the Bernstein polynomials.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

762 Z. HARTH, H. SUN AND M. SCHÄFER

The application of this basic procedure to a computational grid corresponding to a complex
geometry configuration is done by mapping the corresponding part of the grid from the physical
domain into the unit cube in the logical domain by

n= n(x) =

⎡
⎢⎢⎣

�1(x1, x2, x3)

�2(x1, x2, x3)

�3(x1, x2, x3)

⎤
⎥⎥⎦ (17)

This transformation is accomplished by defining an arbitrary parametric space (shape box) which
has the shape of an ordinary hexahedral element that contains the part of the geometry to be
modified.

The inverse of transformation (17) is given by

⎡
⎢⎢⎣
x1

x2

x3

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
a11 a21 . . . a81

a12 a22 . . . a82

a13 a23 . . . a83

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1

�1

�2

�3

�1�2

�1�3

�2�3

�1�2�3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(18)

where the coefficients of the transformation matrix a10 . . . a18; a20 . . . a28; a30 . . . a38 can be computed
by using the location of the corners of the shape box and the ones of the unit cube. The (non-linear)
system (18) is solved by the Newton method. Any grid point outside the shape box, i.e. n /∈ [0, 1]3,
is not considered in the following transformations and its displacement components are set to zero.

The control points in the logical space p0def are also transformed to the physical space by the
mapping rule (18), i.e. p0def → p0def. Displacing the control points into a new position pidef, the
deformed grid is determined by

xi =

⎧⎪⎪⎨
⎪⎪⎩

	∑
d=0

∑
e=0

�∑
f =0

a	
d(s)a

e(t)a

�
f (u)pidef, n ∈ [0, 1]3

x0 otherwise

(19)

The shape basis vectors Ti are the difference between the displaced positions xi and the initial
positions x0. The overall procedure is illustrated in Figure 3.

The considered approach avoids performing expensive grid generation at each iteration step
since the shape deformation within the optimization process is obtained simply by applying (12).
Another major advantage is the possibility of reducing the number of the design variables. Since
the choice of the deformation vectors are defined once at the beginning of the optimization process,

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 763

Figure 3. Geometry deformation with FFD technique.

the achievable shape is restricted. Hence an optimization result depends on the choice of the control
points and on their displacements.

4. FLUID DYNAMICS

We consider an incompressible Newtonian fluid flow. The numerical analysis of the flow is based
on the discretization of the Navier–Stokes equations with necessary initial and boundary conditions.
Detailed derivation of these equations can be found in e.g. References [41, 42].

The mass conservation equation is given by

�ui
�xi

= 0 (20)

The momentum conservation equations are

�(�ui)

�t
+ �(�uiu j)

�x j
=− �p

�xi
+ ��i j

�x j
+ � fi for i, j = 1, 2, 3 (21)

with the pressure p, the density �, the body forces fi , the velocity components ui and the time t .
For incompressible Newtonian fluids the viscous stress tensor is

�i j = �

(
�ui
�x j

+ �u j

�xi

)
(22)

with the dynamic viscosity �. Using the necessary initial and boundary conditions, the system of
equations (20) and (21) can be solved for the unknowns ui and p [21, 43].

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

764 Z. HARTH, H. SUN AND M. SCHÄFER

The flow solver FASTEST [20, 21] is employed to solve the Navier–Stokes equations. The
solver is based on a fully conservative finite volume method on a non-staggered, cell-centred grid
arrangement, with a pressure-correction approach of SIMPLE type. For particular information about
the employed computational techniques we refer to References [21, 43]. A multi-grid technique and
the possibility for parallel computing allow for a high numerical efficiency for many application
cases [21, 44, 45].

5. NUMERICAL RESULTS

To compare the two optimization approaches we consider the shape optimization of a 3-dimensional
pipe conjunction with respect to the pressure drop �p between inlet and outlet. A sketch of the
investigated geometry is shown in Figure 4.

The object of the optimization is the shape of the geometry part B2, where the shown simple
connection serves as starting solution in the optimization procedure. The flow problem domain is
discretized using 32 768 control volumes. The flow medium is water with constant density and
viscosity (�= 1000 kg/m3, � = 10−3 Pa). The characteristic Reynolds number is 200 based on the
diameter H and the block inlet velocity.

To investigate how the final shape and efficiency is influenced by the degree of the optimization
problem, different numbers of control points are employed to generate three different sets of
displacement fields, i.e. shape basis vectors. For each set of shape basis vectors, the shape box
around B2 is discretized equidistantly by (3,3,3), (4,3,3) and (5,3,3) (x, y, z-directions) as shown
in Figure 5. The number of control points with these discretizations on the shape box surface is
24, 32 and 40, respectively. Since the control points on the corners are not allowed to be moved to
assure the conjunction to B1 and B3, we have chosen 4, 8 and 12 control points for our three test
cases to be moved that are directly intersecting with the surface of the pipe. The control points
chosen on the shape box to be moved are illustrated in Figure 5.

The shape basis vectors corresponding to the chosen control points on B2 can be seen in
Figure 6 together with the deformation directions. The deformations are performed perpendicular
to the surface they act on with an initial amount of H/20, i.e. if the design variable is equal to 1 the
actual distortion is H/20. The deformation in each case is bounded in y-direction between 0 and
20H , which means that the total amount of distortion in this direction is at most H/20∗20H = H2.
In the xz-direction deformations different box constraints are considered as given in related problem
definitions (23)–(25).

Y X

Z

Inlet

Outlet

2H

2H

15H

5H

15H5H

B1

B2

B3

Figure 4. Sketch of the initial geometry configuration.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 765

x

y

z

Figure 5. Chosen control points on shape boxes with (3,3,3), (4,3,3) and (5,3,3) discretizations.

X

Y

Z
T_1

T_2

Y X

Z

T_3

T_4

X

Y

Z

T_4

T_1 T_2

T_3

Y X

Z

T_5

T_6

T_7

T_8

X

Y

Z
T_1 T_2 T_3

T_4 T_5 T_6

Y X

Z

T_7

T_8

T_9

T_10

T_11

T_12

Figure 6. Shape basis vectors for the given problem for 4, 8 and 12 DVs.

In summary we consider the following three optimization problems:

4 design variables: min�p(xi)

0�x1, x2�20H

0�x3, x4�15H

(23)

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

766 Z. HARTH, H. SUN AND M. SCHÄFER

Figure 7. Pressure distribution of the initial configuration.

8 design variables: min�p(xi)

0�x1, . . . , x4�20H

0�x5, x8�8H

0�x6, x7�15H

(24)

12 design variables: min�p(xi)

0�x1, . . . , x6�20H

0�x7, x12�8H

0�x8, x11�9H

0�x9, x10�15H

(25)

For all three test cases both optimization tools, CONDOR and SIMPLIFIED NSGA-II start the
optimization process with the same initial geometry configuration (Figure 4). For CONDOR the
initial trust region radius is taken as the interval of the box constraints, given in Equations (23)–(25)
where the optimization problems are summarized, and the initial sampling distance as H. If the
sampling distance falls below 0.0001 the optimization process is stopped automatically.

SIMPLIFIED NSGA-II is employed with a predefined population number of 20. The initial
population is generated randomly in the box constraints of the optimization problem. Tournament
selection, SBX crossover for real parameters and real polynomial mutation are employed as the
genetic operator in this method. We chose a relatively high recombination probability, i.e. pc = 0.9.
And the mutation probability is chosen by pm = 1/nreal, where nreal is the number of the real design
variables. Stopping criterion is defined such that the optimizer stops automatically if the optimal
pressure drop does not improve after 20 generations.

In Figure 7 the pressure distribution of the initial configuration and in Figure 8 the shapes
and pressure distributions at the surface of the achieved optimization results with both methods

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 767

Figure 8. Pressure distribution of the optimum configurations with 4 (top), 8 (middle) and 12 (bottom)
DVs calculated by CONDOR (left) and SIMPLIFIED NSGA-II (right).

are given. The corresponding deformations and pressure distributions in y-direction are given in
Figure 9.

Figures 10 and 11 show pressure distributions of the found optima achieved by CONDOR with
8 and 12 design variables and achieved by SIMPLIFIED NSGA-II with 12 design variables together
with streamlines. In these figures, the recirculation zones are observable at the bottom of the
enlarged part of the pipe.

The reason of the achieved pressure drop is mainly the recirculation zones by enlargement of
the pipe, e.g. Figures 10 and 11. Apparently, these separations help considerably in reducing the
pressure drop. An explanation of this phenomenon is that one can distinguish different kinds of
energy losses in such pipe junctions. On the one hand, energy is dissipated in recirculation zones,
whose amount is proportional to its size and its vorticity. On the other hand, energy is employed to
overcome the effect of the wall, where the no-slip condition holds. That energy loss is proportional
to the normal gradient of the tangential velocity component at the wall. Compared to an attached

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

768 Z. HARTH, H. SUN AND M. SCHÄFER

Figure 9. Pressure distributions of the initial configuration (very top) and optimum
configurations with 4 (top), 8 (middle) and 12 (top) DVs and deformations to the

y-direction calculated by CONDOR (left) and SIMPLIFIED NSGA-II (right).

flow this gradient is reduced by the separation. Obviously, the found shape realizes a compensation
between both kinds of energy losses.

The solution vectors for the optimization problems obtained with both methods are summarized
in Table I.

It is cognizable that the results both obtained by CONDOR and SIMPLIFIED NSGA-II are al-
most symmetric in the xz-direction deformations. For example, in the case of 12 DVs (Row 3)
x9 = x10 = 0 and x8 = x11 = 9 and x7 ≈ 6, x12 ≈ 8. The solution vectors in each case are similar
to each other at many control points (Table I), but there are a few points where slightly differing

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 769

Figure 10. Recirculation of the flow noticed in the optimum with 12 DVs
calculated by SIMPLIFIED NSGA-II.

Figure 11. Recirculation of the flow noticed in the optimum with 8 and 12
DVs respectively calculated by CONDOR.

values for the two optimization techniques arise. This difference may be a result of the randomness
of SIMPLIFIED NSGA-II within the box constraints.

The shapes achieved by the optimum configurations of different numbers of design variables are
compared in Figures 12 and 13 illustrating the midsections at x = 0 and y = 0. Both optimization
techniques yield similar results in the sense that in the case of 4 design variables the amount of
the deformation is larger than in the other cases.

In Table II the total number of function evaluations, the evaluation number where the
optimum is achieved and the efficiency in each case for both optimization tools are given.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

770 Z. HARTH, H. SUN AND M. SCHÄFER

Table I. Solution vectors achieved by both optimization techniques.

Case Solution vector With CONDOR With SIMPLIFIED NSGA-II

4 DVs

⎧⎪⎨
⎪⎩
x1
x2
x3
x4

⎫⎪⎬
⎪⎭

⎧⎪⎨
⎪⎩
12.45
12.47
11.97
15

⎫⎪⎬
⎪⎭ H

⎧⎪⎨
⎪⎩
12.54
12.54
11.98
15

⎫⎪⎬
⎪⎭ H

8 DVs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
x4
x5
x6
x7
x8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

7.72
8.97
7.74
8.96
8
7.5
0
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

7.56
8.72
7.51
8.79
8

5.98
0
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

H

12 DVs

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x1
x2
x3
x4
x5
x6
x7
x8
x9
x10
x11
x12

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6.32
3

5.33
6.64
2.34
6.58
6.31
9
0
0
9
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

6.53
3.38
5.91
6.46
3.73
5.82
5.60
9
0
0
9
8

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

H

The efficiency is given in terms of pressure drop reduction compared to the pressure drop of
the initial configuration.

The optimization tool CONDOR uses the first 15, 45 and 91 (for the design variables 4, 8 and 12,
respectively) iterations for the development of the quadratic approximation model. In the remaining
75, 146 and 231 iterations the actual optimization process takes place. With CONDOR the number
of function evaluations nearly increases linearly with the number of design variables, while with
SIMPLIFIED NSGA-II a more disproportionate behaviour is observed.

In Figure 14 the proportion of number of function evaluations of NSGA-II to CONDOR for all
three cases are given. In all cases NSGA-II needs about 8 to 13 times more number of function
evaluations (i.e. more computation time) than CONDOR.

Figures 15 and 16 show the history of the pressure drop reduction over the number of iterations
for the 3 test cases when using CONDOR and SIMPLIFIED NSGA-II. Using SIMPLIFIED NSGA-II, the
best solution is achieved at the generation number 41, 80 and 119, respectively. The corresponding
function iterations are 820, 1600 and 2380 (Table II).

The achieved efficiencies for the two optimization are quite similar (see Table II). It can be
deduced that for the given problem properties the efficiency is mainly bounded by the constraints
and it only is slightly depending on the number of design variables for both optimization tools.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 771

Figure 12. Midsection of the original geometry at x = 0 (top) and the differences in the optimized
geometries calculated by CONDOR (left) and SIMPLIFIED NSGA-II (right) at x = 0.

6. CONCLUSION

We have presented a comparison between two approaches for the optimization of fluid flow
geometries, i.e. derivative free Newton-based tool CONDOR and the evolutionary algorithm SIM-
PLIFIED NSGA-II. We have compared the methods regarding the quality of the optima and the
computational efficiency.

From the presented results it can be concluded that the two optimizations techniques yield
nearly the same optimal values together with nearly the same sets of solutions corresponding to
similar shapes. By using different number of design variables we have investigated the influence
of the degree of the optimization problem. Increasing the number of design variables for both
methods yields only slightly better optima, however, with different solution sets and optimum
shapes.

Concerning the computational costs of the optimization process, in all cases CONDOR re-
quires much less number of function evaluations than SIMPLIFIED NSGA-II to reach the optimum.
The number of design variables does not significantly influence the ratio of required number
function evaluations. It has been seen that the Newton-based optimizer compares favourably to
evolutionary methods regarding the quality of the solution and consumes much less computation
time.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

772 Z. HARTH, H. SUN AND M. SCHÄFER

Figure 13. Midsection of the original geometry at y = 0 (top) and the differences in the optimized
geometries calculated by CONDOR (left) and SIMPLIFIED NSGA-II (right) at y = 0.

Table II. Comparison of optimization results.

SIMPLIFIED NSGA-II CONDOR

Opt. at: # Total FEs Efficiency (%) Opt. at: # Total FEs Efficiency (%)

4 DVs 820 1200 ≈ 23.29 85 90 ≈ 23.29
8 DVs 1600 1980 ≈ 24.09 178 191 ≈ 23.19
12 DVs 2380 2760 ≈ 25.00 273 288 ≈ 25.07

15
NSGA-II / CONDOR (in terms of #FEs)

12.5

10

7.5

5

2.5

0
DV4 DV8 DV12

Figure 14. The proportion of number of total function evaluations of SIMPLIFIED NSGA-II to CONDOR.
The figure shows how much faster CONDOR ends the optimization process.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 773

 0

 5

 10

 15

 20

 25

 30

0 50 100 150 200 250 300 350

E
ffi

ci
en

cy
 in

 %

Function Evaluations

DV4--CONDOR
DV8--CONDOR
DV12--CONDOR

Figure 15. Efficiency history with CONDOR.

 25.5

 25

 24.5

 24

 23.5

 23

 22.5

28802640240021601920168014401200960720480240

E
ffi

ci
en

cy
 in

 %

Function Evaluations

DV4--NSGA-II
DV8--NSGA-II
DV12--NSGA-II

Figure 16. Efficiency history with SIMPLIFIED NSGA-II.

REFERENCES

1. Burczyński T, Adamczyk T. The boundary element formulation for multiparameter structural shape optimization.
Applied Mathematical Modelling 1985; 9(3):195–200.

2. Haftka R, Grandhi R. Structural shape optimization—a survey. Computer Methods in Applied Mechanics and
Engineering 1986; 57(1):91–106.

3. Herskovits J, Dias G, Soares CM. A full-stress technique for structural shape optimization. Appl. Math. Comput.
Sci. 1996; 6(2):303–319, shape optimization and scientific computations (Warsaw, 1994).

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

774 Z. HARTH, H. SUN AND M. SCHÄFER

4. Harth Z, Schäfer M. Investigation of derivative-free optimization tools for optimizing flow geometries. Evolutionary
and Deterministic Methods for Design, Optimization and Control with Applications to Industrial and Societal
Problems, EUROGEN 2005, Munich, Germany, 2005.

5. Hirschen K, Schäfer M. Artificial neural networks for shape optimization in cfd. ERCOFTAC Design Optimization:
Methods and Applications, Conference Proceedings, Athens, Greece, 2004.

6. Lehnhäuser T, Schäfer M. Efficient discretization of pressure-correction equations on non-orthogonal grids.
International Journal for Numerical Methods in Fluids 2003; 42:211–231.

7. Mohammadi B, Pironneau O. Shape optimization in fluid mechanics. Annual Review of Fluid Mechanics 2004;
36:255–279.

8. Perry E. Three dimensional shape optimization of internal fluid flow systems using arbitrary shape deformation
coupled with computational fluid dynamics. Ph.D. Dissertation, Brigham Young University, Provo, Utah, 1999.

9. Ronzheimer A. Post-parameterization of complex cad-based aircraft-shapes using freeform deformation. 8th
International Conference on Numerical Grid Generation in Computational Field Simulations, Honolulu.

10. Vanden Berghen F, Bersini H. Condor, a new parallel, constrained extension of Powell’s UOBYQA algorithm
Technical Report TR/IRIDIA/2204-11, 2004.

11. Deb K, Agrawal S, Pratap A, Meyarivan T. A fast elitist non-dominated sorting algorithm for multi-objective
optimization: Nsga-II. Proceedings of the Parallel Problem Solving from Nature VI Conference, Paris, 2000;
849–858.

12. Rosenbrock HH. An automatic method for finding the greatest or least value of a function. Computer Journal
1960/1961; 3:175–184.

13. Bazaraa Mokhtar S, Shetty CM. Nonlinear Programming, Theory and Algorithms. Wiley: New York, Chichester,
Brisbane, 1979.

14. Powell MJD. UOBYQA: unconstrained optimization by quadratic approximation. Mathematical Programming
2002; 92(3, Series B):555–582, iSMP 2000, Part 2 (Atlanta, GA).

15. Conn A, Scheinberg K, Toint PL. Recent progress in unconstrained nonlinear optimization without derivatives.
Mathematical Programming 1997; 79:397–414.

16. Powell MJD. The NEWUOA software for unconstrained optimization without derivatives. Large-scale nonlinear
optimization, Nonconvex Optim. Appl. vol. 83. Springer: New York, 2006; 255–297.

17. Holland JH. Adaptation in Natural and Artificial Systems. University of Michigan Press: Ann Arbor, Mich. An
introductory analysis with applications to biology, control, and artificial intelligence.

18. Harth Z, Schäfer M. Numerical shape optimization for flow configurations. ERCOFTAC Design Optimization:
Methods and Applications, Conference Proceedings, Athens, Greece, 2004.

19. Harzheim L, Graf G, Liebers J. Shape200: a program to create basis vectors for shape optimization using solution
200 of msc/nastran. Proceedings of the Tenth International Conference on Vehicle Structural Mechanics and
CAE 1997; 308:219–228.

20. Durst F, Schäfer M. A parallel blockstructured multigrid method for the prediction of incompressible flows.
International Journal for Numerical Methods in Fluids 1996; 22:549–565.

21. FASTEST User Manual. Department of Numerical Methods in Mechanical Engineering, Darmstadt University of
Technology, Darmstadt, Germany, 2004.

22. Wright MH. Direct search methods: once scorned, now respectable. Numerical Analysis (Dundee 1995),
vol. 344, Pitman Res. Notes Math. Ser.: Longman, Harlow, 1996; 191–208.

23. Spendley W, Hext GR, Himsworth FR. Sequential application of simplex designs in optimisation and evolutionary
operation. Technometrics 1962; 4:441–461.

24. Powell MJD. On the convergence of the DFP algorithm for unconstrained optimization when there are only two
variables. Mathematical Programming 2000; 87(2, Series B):281–301, studies in algorithmic optimization.

25. Powell MJD. On trust region methods for unconstrained minimization without derivatives. Mathematical
Programming 2003; 97(3, Series B):605–623, new trends in optimization and computational algorithms
(NTOC 2001) (Kyoto).

26. Moré J, Sorensen D. Computing a trust region step. SIAM Journal on Scientific and Statistical Computing 1983;
4(3):553–572.

27. Beyer HG, Deb K. Self-adaptive genetic algorithms with simulated binary crossover. Evolutionary Computation
Journal 2001.

28. Deb K, Beyer HG. On self-adaptive features in real-parameter evolutionary algorithms. IEEE Transactions on
Evolutionary Computation 2001.

29. Goldberg DE, Deb K. A comparative analysis of selection schemes used in genetic algorithms. Foundations of
Genetic Algorithms (Bloomington, IN, 1990). Morgan Kaufmann: San Mateo, CA, 1991; 69–93.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

COMPARISON OF DFNBM AND EM 775

30. Deb K, Beyer HG. Self-adaptive genetic algorithms with simulated binary crossover. Technical Report, Department
of Computer Science/XI, University of Dortmund, Germany, 2001.

31. Verdegay JL, Herrera F, Lozano M. Tackling real-coded genetic algorithms: operators and tools for behavioral
analysis. Artificial Intelligence Review 1998.

32. Agrawal RB, Deb K. Simulated binary crossover for continuous search space. Complex System 1995.
33. Deb K. A population-based algorithm-generator for real-parameter optimization. Technical Report, KanGAL

Report, 2003.
34. Michalewicz Z. Genetic Algorithms + Data Structures = Evolution Programs. Springer: Berlin, 1992.
35. Goyal M, Deb K. A combined genetic adaptive search (geneas) for engineering design. Computer Science and

Informatics 1996.
36. Deb K, Mohan M, Mishra S. A fast multi-objective evolutionary algorithm for finding well-spread pareto-optimal

solutions. Technical Report, KanGAL Report, 2003.
37. Zitzler E, Thiele L. Multiobjective evolutionary alogrithms: a comparative case study and the strength pareto

approach. IEEE Transactions on Evolutionary Computation 1999; 3(4):257–271.
38. Zitzler E, Deb K, Thiele L. Comparison of multiobjective evolutionary algorithms: empirical results. Evolutionary

Computation 2000; 8(2):173–195.
39. Zitzler E, Deb K, Thiele L. Combining convergence and diversity in evolutionary multi-objective optimization.

Evolutionary Computation 2002; 10(3):263–282.
40. Sederberg T, Parry S. Free form deformation of solid geometric models. Proceedings of SIGGRAPH’86, August

1986; 151–159.
41. Brodkey RS. The Phenomena of Fluid Motions (1st edn). Dover Publications: Newyork, 1995.
42. Spurk J. Fluid Mechanics. Springer: Berlin, 1997.
43. Schäfer M. Computational Engineering—Introduction to Numerical Methods. Springer: Berlin, 2006.
44. Basara B, Durst F, Schäfer M. A parallel multigrid method for the prediction of turbulent flows with Reynolds

stress closure. In Parallel Computational Fluid Dynamics, vol. 95. Elsevier: Amsterdam, 1996; 347–354.
45. Schäfer M. Large-scale scientific flow computations, large-scale scientific computations of engineering and

environmental problems. Notes on Numerical Fluid Mechanics 1998; 62:98–110.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 53:753–775
DOI: 10.1002/fld

